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Abstract—A fully-integrated 8.4 Gb/s 2.5 pJ/b mobile memory
I/O transceiver using simultaneous bidirectionaldual band sig-
naling is presented. Incorporating both RF-band and baseband
transceiver designs, this prototype demonstrates an energy-ef-
ficient and high-bandwidth solution for future mobile memory
I/O interface. The proposed amplitude shift keying (ASK) mod-
ulator/demodulator with on-chip band-selective transformer
obviates a power hungry pre-emphasis and equalization cir-
cuitry, revealing a low-power, compact and standard mobile
memory-compatible solution. Designed and fabricated in 65-nm
CMOS technology, each RF-band and baseband transceiver
consumes 10.5 mW and 11 mW and occupies 0.08 mm? and
0.06 mm? die area, respectively. The dual-band transceiver
achieves error-free operation (BER <10~'%) with 22> —1 PRBS
at 8.4 Gb/s over a distance of 10 cm.

Index Terms—Amplitude-shift-keying (ASK), dual-band sig-
naling, impedance transformation, mobile memory interface,
multi-band RF-Interconnect (RF-I), simultaneous bidirectional.

I. INTRODUCTION

S MOBILE devices (such as smart phones) continue

to enhance video processing and graphics-intensive
computing capabilities, they keep demanding greater aggregate
memory bandwidths, projected to reach 12.8 GB/s in the near
future [1]. However, battery energy efficiency, fast power
mode transition timing, and thermal dissipation constraints
are expected to impose more strict challenges for improving
both energy efficiency and aggregate data throughput. Current
DDR memory I/Os operate at 5 Gb/s with a power efficiency
of 17.4 mW/Gb/s (i.e., 17.4 pJ/b) [2], and graphic DRAM 1/Os

Manuscript received April 25, 2011; revised June 25, 2011; accepted July 01,
2011. This paper was approved by Guest Editor Ken Takeuchi. This work was
supported in part by the West Virginia University (WVU) New Faculty Research
Support Fund and in part by the Center for Domain-Specific Computing (CDSC)
funded by the NSF Expedition in Computing Award CCF-092617.

G.-S. Byun is with the Lane Department of Computer Science and Electrical
Engineering, West Virginia University, Morgantown, WV 26506 USA (e-mail:
gyungsu.byun@mail.wvu.edu).

Y. Kim and M.-C. F. Chang are with the Department of Electrical Engi-
neering, University of California at Los Angeles, Los Angeles, CA 90095 USA
(e-mail: yhkim@ee.ucla.edu; mfchang@ee.ucla.edu).

J. Kim is with the School of Electronic and Electrical Engineering, Hongik
University, Seoul 121-791, Korea (email: js.kim@hongik.ac.kr).

S.-W. Tam is with Marvell Semiconductor, Santa Clara, CA 95054 USA
(e-mail: roccotam@marvell.com).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSSC.2011.2164709

operate at 7 Gb/s/pin [3] with a power efficiency worse than
that of DDR. Therefore, future mobile memory I/O interfaces
will require both much higher bandwidths and better power
efficiency.

Recent research [4]-[6] has led to the demonstration of uni-
directional serial links using low-swing differential signaling
with terminated channels, sensitive offset calibrated receivers
and voltage mode line drivers with excellent power efficiency
(i.e., ~1 mW/Gb/s [7]) compared to that of current mobile
memory interfaces. However, these links are unsuitable for mo-
bile memory I/O interfaces for the following reasons: 1) using
symmetric links between two similar devices, as opposed to the
master/slave configuration in a memory interface, and 2) re-
quiring extensive initialization time [1] (~1000 clock cycles
[1]), which becomes problematic to meet mobile DRAM I/O
needs in switching between active, stand-by, self-refresh and
power-down operation modes [1]. Simultaneous bidirectional
(SBD) interconnect [9]-[11], has also been developed to facili-
tate increased aggregate memory bandwidth with simultaneous
and bidirectional point-to-point communication links. How-
ever, such interconnect encounters challenges from reduced
input signal noise margin due to increased number of voltage
references and higher crosstalk and inter-symbol interference
(IST) due to the low-pass effects of the channel [11], which in
either case degrades its bit-error rate (BER).

Furthermore, traditional baseband-only (or BB-only) sig-
naling [2], [3], [15] also tends to consume power super-linearly
with extended bandwidth [1], partially due to the needs of power
hungry pre-emphasis, and/or equalization circuitry. To over-
come such technical obstacles, we hereby present the use of a
dual-band interconnect (DBI) [8], [17] to enable a simultaneous
bidirectional memory I/O interface with both high throughput
data rate and low-power circuit operation. Compared to the
conventional BB-only signaling, the proposed DBI, as shown
in Fig. 1 uses both baseband and RF-bands for simultaneous
and bidirectional dual-data-stream communication through a
shared transmission line (T-Line). This dual (BB+RF) band
concept can be further extended to Base + Multiple-RF bands
in the future. Instead of limiting the baseband-only interconnect
operation within its linear-power-consumption region versus
the bandwidth, we can double the interface bandwidth by
using the DBI and still maintain in the linear power-consump-
tion versus the bandwidth region in each of the two bands.

0018-9200/$26.00 © 2011 IEEE
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Fig. 1. (a) DBI-based mobile memory interface architecture with forward-clock for simultaneous bidirectional signaling. (b) Dual-band signaling in frequency

domain.

Moreover, with simple forwarded clocking that adds a small
overhead to mobile DRAM 1/0, the DBI can facilitate an SBD
data link as well. By applying such links to DRAM I/O data
(DQ) and command/address (C/A), we can greatly reduce the
DRAM access time by requesting DRAM read/write operations
concurrently. In summary, by using the DBI, we can implement
the SBD DRAM [I/O interface with a much higher aggregate
data rate (up to 8.4 Gb/s and 10 Gb/s at standard FR4 and
Rogers 4003 [13] test boards, respectively), and a low-power
operation (<2.5 mW/Gb/s) to meet the mobile memory I/O
requirements [1].

The remainder of this paper is organized as follows. Section I1
describes the DBI transceiver architecture and discusses its
advantages and considerations. Section III covers the design
details of a DBI transceiver, signal integrity, and channel
modeling. Measurement results are given in Section IV. Our
conclusion is presented in Section V, followed by an analysis
of impedance-matching for a transformer-based receiver in the
Appendix.

II. DBI INTERFACE ARCHITECTURE

Fig. 1(a) shows the proposed DBI-based mobile memory
interface architecture where the DRAM device can operate
directly from a forwarded clock from the memory controller,
without a PLL/DLL, to synchronize the entire interface.
Fig. 1(b) shows the intended DBI signaling that contains both
base and RF-bands for simultaneous communications.

The proposed dual-band interconnect (DBI) system architec-
ture contains a set of baseband transceiver (BBTX, BBRX) and
a set of RF-band transceiver (RFTX, RFRX) with shared oft-
chip differential transmission line. In this system, when BBTX
and BBRX communicate with each other by using a common-

mode signaling at the baseband, the RFTX and RFRX com-
municate concurrently by using a differential-mode signaling at
the 23 GHz RF band. The proposed dual (RF + base) band sig-
naling is aimed to twice the data rate through two different fre-
quency bands without any latency penalty. Fig. 1(b) shows the
dual band frequency allocations for two concurrent I/O chan-
nels. The key challenge in designing this dual-band intercon-
nect system is to reduce the RF-band transceiver’s area and
power overhead, while achieving a sufficient spectral isolation
between two communication bands. These technical challenges
are overcome by using forward clocking and ASK (de)-modula-
tion schemes. The forward clocking scheme on the DRAM side
can reduce the clock overhead of DRAM, support faster power
switching modes [1], and synchronize skews between dual data
channels on the DRAM side with no need of power hungry clock
and data recovery (CDR) and phase synchronization circuitry
[8]. The memory controller forwards a half bit-rate clock to the
DRAM over the clock line (CLK). The forwarded clock is di-
rectly buffered to time the DRAM transmit and receive circuits.
This eliminates the need for any PLL or DLL on the DRAM,
with all phase compensation performed by the memory con-
troller side, allowing fast DRAM power mode transitions and
resulting in a simplified DRAM clock architecture.

III. TRANSCEIVER CIRCUIT DESIGN

A. Baseband Transceiver (BBTX, BBRX)

Fig. 2(a) shows the baseband transmitter (BBTX) which uti-
lizes a low common-mode push-pull output driver with two re-
sistors in a series with transistors. To avoid impedance mis-
match and reduce sensitivity to process, voltage and temperature
(PVT) variations, the BBTX has a digitally controlled off-chip
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Fig. 2. (a) Baseband transmitter with digitally controlled OCD impedance
logic. (b) Simulated OCD resistance versus control code.

driver (OCD) impedance circuit. The OCD is composed of mul-
tiple binary-weighted sub-drivers and decoder logics to provide
digitally controllable driver strength by selectively enabling the
sub-drivers [12]. The strength of the OCD simulated as a func-
tion of the digital control code is shown in Fig. 2(b). Regardless
of the PVT variations, there are sufficient control codes to con-
trol the OCD strength with the value of 50 £2 & 15 © matching
the required resistance to the impedance of off-chip T-Line (sin-
gled-ended perspective).

Fig. 3(a) shows the baseband receiver (BBRX) which ampli-
fies the incoming data stream D2 (BB) using buffers with a dig-
itally controlled on-die termination (ODT) to set the common-
mode voltage (VTERM) and remove the impedance mismatch
for optimal signal integrity [12]. The ODT should be switchable
so that it controls resistance for the baseband receiver matching
capability. The ODT is implemented with the series connection
of a passive resistor and a transistor, as shown in Fig. 3(a). The
required resistance value of the ODT should be 50 €2 which is
same as the impedance of T-Line. To avoid the process varia-
tion of on-chip passive resistor (typically +/—20%), the ODT
value can be controlled from 60 €2 to 40 {2 on the DBI link. The
simulated worst case (impedance mismatched versus matched)
waveforms are shown in Fig. 3(b). In summary, the strength of
the OCD is calibrated to obtain accurate driver strength and the
baseband data link is terminated by ODT resistors regardless of
process variation.

5 by

R2Z e e e R163
< <

Digital ODT
Control Logic

D2 (BB) OUT
>_I>—.. lo[t]ofT 1
VTERM

Amplfier Output Buffer
(@
1
—Matched (50 ohm)
i, : = = =Unmatched
O] SRRt S S E Lo IR SO RO BT
s i :
3
o
: A
ﬁ 04 "-|' Il” 1 EI.‘ I'I Il
HE R E::; g ity Y
02} st e N
0O 2 4 6 8 10
Time [ns]
(b)

Fig. 3. (a) Baseband receiver with digitally controlled ODT impedance logic.
(b) Simulated BBTX output waveform.

B. RF-Band Transceiver (RFTX, RFRX)

Fig. 4 shows the RF-band transmitter (RFTX) which contains
an LC tank VCO, an ASK modulator and a band-selective trans-
former. In RFTX, the VCO first generates RF carrier at 23 GHz
and continuously modulates M1 and M2 for ASK communica-
tion. The data stream D1 (RF) modulates the 23 GHz carrier by
switching on/off the current flow through M3 and M4 to com-
plete the ASK modulation. The modulated output is then induc-
tively coupled into an off-chip T-Line by way of an on-chip dif-
ferential transformer. The simulated waveforms of the D1 (RF)
input and ASK modulated output are shown in Fig. 4.

Fig. 5 shows the RF-band receiver (RFRX) which consists of
a transformer and demodulator. For energy-efficient and com-
pact design, the proposed RF demodulator uses non-coherent
direct down-conversion scheme. Since a non-coherent detector
only senses the envelope of an incoming signal, the proposed re-
ceiver does not require the power-hungry phase and frequency
synchronizer. The RFRX first rejects the BB data stream by
using an on-chip frequency-selective transformer. The band-
pass filtered RF-band data stream is then injected into the re-
ceiver differential mutual-mixer which is composed of a self-
mixer [16] and resistor-feedback amplifier and down-converted
to the baseband data D1 (RF). In addition to the band-pass filter
capability, the on-chip transformer acts as impedance matching
device as well as passive amplifier for the incoming RF band
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Fig. 4. (a) RF-band transmitter by using ASK modulation. (b) Simulated RFTX waveforms.

signal. A more detailed analysis on transformer design will be
given in the following section. At the mutual mixer, the termi-
nation voltage and the tail current source determine the oper-
ating point, and the bootstrapped signal is extracted at the output
node. We utilize a class-AB amplifier with resistive feedback
to cancel offset and further filter out the residue of the RF car-
rier. The simulated incoming ASK modulated signal, differen-
tial mixer output, and recovered baseband data are summarized
in Fig. 5.

Fig. 6 shows a DBI working mechanism for SBD dual data
communication on a channel. Both of the 2-D MOMENTUM
and 3-D HFSS simulations for transformer design and ADS cir-
cuit simulation [14] have been performed on the complete DBI
architecture as a part of the design cycle. From baseband sig-
naling perspective, the signal is fed into the center tap of the
primary coil and transferred to the channel in common-mode.
On the receiving end, the baseband signal is extracted through
the center tap of a secondary coil. In the case of RF-band sig-
naling, the differential signal is injected into the differential port
of a primary coil and then coupled to the channel through a sec-
ondary coil.

C. Transformer Design for Impedance Matching and
Band-Pass Filtering

In this prototype design, an on-chip transformer with pri-
mary-to-secondary-coil turn ratio of 1:2 is chosen to accom-
plish the needed signal gain, impedance matching, band-pass-
filtering and output power transfer. Unlike the baseband sig-
naling, the RF-band signal cannot be terminated by using a
simple resistor, since the parasitic around the resistor would
dominate at high frequencies. Consequently, the proposed RF
transceiver uses on-chip transformers as matching devices with
simplified network illustrated in Fig. 7(a). The transformer is
loaded by the mutual-mixer input stage with impedance mod-
eled by series connection between a resistor and a capacitor. The
detailed step-by-step analysis is given in the Appendix. Looking
into the secondary coil of the transformer, an RLC resonant
tank is formed with the impedance shown as the dashed line
in Fig. 7(b). The real part of the mutual mixer input impedance
(modeled as R in Fig. 7(b)) is boosted to roughly 200 £ due
to the intended resonance at the carrier frequency of 23 GHz,
which corresponds to an impedance of 50 €2 at the transformer
input side (primary coil) shown as a solid line in Fig. 7(b).
In Fig. 7(c), we plot the input reflection coefficient (S11) of
both the physical transformer (dashed line) and its equivalent
lumped RLC model (solid line) to confirm our analysis on the
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Fig. 5. RF-band receiver with band-selective on-chip transformer and simulated RFRX waveforms.

impedance matching. In both cases, S11 confirms the input re-
flected power below —30 dB near the self-resonant frequency.

The transformer also rejects the unwanted frequency band of
signals, which is the transmitted baseband signal in this case.
Looking from the controller side, the transmitted power does
show a band-pass characteristic, and the rejection of the base-
band is more than 20 dB, as indicated in Fig. 7(d) (assuming
that the baseband spectrum occupies up to 2.5 ~ 3 GHz). The
transmitted power is about 6 dB higher at the secondary coil
of the transformer again due to the 1:2 transformer turn ratio.
In summary, the impedance matching and the rejection of un-
wanted frequency band can be effectively achieved by utilizing
the on-chip transformer.

D. DBI Memory Channel Modeling, Signal Integrity and
Latency

It is important to analyze the frequency characteristic of the
memory channel on FR-4 PCB, since the RF-band signal may

suffer from significant loss in the carrier frequency of 20 GHz.
For an accurate channel modeling including wire bonds and par-
asitic capacitance, the 3-D EM solver tool (HFSS) is used to
generate S parameters. The simulated signal loss of the 10 cm
FR-4 PCB T-Line (Fig. 8(b)) is —8.9 dB at 23 GHz as shown
in Fig. 8(c). The loss will be substantially reduced provided the
memory interface distance is much shorter than 10 cm (typically
~1-2 cm) in modern mobile devices.

Currently, the DDR-SDRAM’s high-speed parallel link
reaches its physical limit originated from channel crosstalk
and supply noise [2]. The channel crosstalk especially takes a
dominant portion of the over 7 Gb/s timing budget, becoming
the main barrier for further speed improvement [2]. In order
to evaluate DBI crosstalk effects, multiple DBI channels are
modeled by considering the electromagnetic coupling from
adjacent channels as shown in Fig. 9(a). There are two possible
cases. The first is an optimistic case where one DBI channel
is idle and the other is working. The second is an extreme
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Fig. 6. DBI working mechanism for simultaneous bidirectional dual data transaction.

crosstalk case where both DBI channels are working concur-
rently. Fig. 9 shows eye-diagrams of BB and RF-band with and
without crosstalk at single and multiple lanes. The crosstalk
occurs whenever the electromagnetic fields from multiple
channels interact. This phenomena cause crosstalk-induced
timing distortion since the propagation time of a T-line varies
depending on the transition of adjacent channel [2]. The worst
simulated crosstalk-induced timing distortion is 21 ps (BB) and
49 ps (RF-band), respectively, because large swing base band
signal impacts on small swing RF-band signal at multiple DBI
channels. In either case, reliable DBI communications can be
established.

Typical memory channel has 8 or 16 lanes. To extend one
lane to multiple lanes per clock, the total timing distortion of
BB and RF-band should be small enough so that the DBI trans-
ceiver of the DRAM side can sample dual-band data based on a
forwarded reference clock from the MCU (BBTX). Total timing
distortion is composed of static latency difference between BB
and RF-band, crosstalk from multiple data lanes and latency
mismatches of DBI transceiver. Fig. 10 shows the simulated la-

tency of DBI transceiver and total timing distortion considering
crosstalk (29 ps (BB) and 49 ps (RF-band)) and latency mis-
matches (i.e., 5.6 ps = 1.87 ps X 3 @ 3 sigma of RF-band). The
crosstalk from multiple channels is a key portion of total timing
distortion. When the total timing distortion on the DRAM side
is less than half clock cycle (i.e., 250 ps @ 2 GHz = 4 Gb/s data
rate), the forward clocking scheme can synchronize skews be-
tween dual data channels on the DRAM side without DLL/PLL
and CDR. It is assumed that the timing skew of (8 x DQ) clock
distribution at the DRAM side may be tracked by a delay com-
pensation scheme.

The VCO startup time may cause latency penalty for simul-
taneous bidirectional communication because RF-band trans-
ceiver uses 23 GHz VCO. To mitigate this possible latency over-
head of RF-band transceiver, an additional VCO startup control
logic may be needed as shown in Fig. 11. When the CS (Chip
Select) control signal asserts, a VCO startup control signal turns
on a VCO ahead of two clock cycles of data strobe (DQS) signal.
After CS signal deasserts, the VCO control logic turns off the
frequency generation VCO circuit to save power.
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IV. MEASUREMENT

The DBI transceiver has been designed and fabricated in
65 nm CMOS technology to demonstrate dual-band bidirec-
tional communication on a shared PCB T-Line. The base and
RF-band transceivers consume 11 mW and 10.5 mW respec-
tively from a single 1.0 V supply. Fig. 12 shows the die photo
of a DBI transceiver, where the base and RF-band transceivers
occupy 0.056 mm? and 0.084 mm? (with on-chip transformers)
respectively. Two designs are integrated for either a controller
or DRAM side so that two devices can implement the complete

interface architecture shown in Fig. 1. The 23 GHz VCO which
seems difficult to be implemented in poor DRAM process is
placed at the memory controller side which typically uses a
CMOS process as the DBI experiment as shown Fig. 12. The
BBTX which operates at the speed of 2.5 GHz @5 Gb/s and
RFRX which is only composed of passive element and active
differential mutual mixer exist at the DRAM side in order to be
better feasible in DRAM process.

To verify the signal integrity, we also conducted a com-
plete BER test. Fig. 13 shows the demonstration setup for a
DBI communication and BER measurements. It is necessary
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Fig. 10. Simulated latency of DBI transceiver and total timing distortion considering crosstalk from multiple channels and latency mismatches.

to measure the frequency spectrum characteristic of carrier
generator to demonstrate a dual-band communication. The
spectrum testing setup and frequency spectrum of the RF
carrier at 23 GHz are depicted in Fig. 14. Note that RF carrier
measurements (—54 dBm) is conducted under the significant
signal loss through cable, connector and the GSG probe, which
is not de-embedded and calibrated.

Fig. 15 shows the measured waveforms for DBI input and
recovered data streams. Fig. 16 shows measured eye diagrams
of aggregate 8.4 Gb/s (4.6 Gb/s BB + 3.8 Gb/s RF-band) data
throughput over a 10 cm T-Line on a FR-4 board and 10 Gb/s
(5 Gb/s BB + 5 Gb/s RF-band) over the same distance T-Line
on a Rogers 4003 board, respectively. The measured eye di-
agrams are taken from the output driver. These eye diagrams
demonstrate that good signal integrity can be achieved at these
data rates with the proposed dual band signaling. Table I shows
the performance comparison to the prior arts. The conventional
interface [1], [2], [15] utilize only baseband signaling. Com-
pared to the latest mobile memory interface using differential
signaling [1], the DBI can double the data rate with 25% less
power consumption.

V. CONCLUSION

We designed and fabricated a DBI for a mobile DRAM I/O in-
terface in 65 nm CMOS to obtain an aggregate data throughput
of 8.4 Gb/s and 10 Gb/s on FR-4 and Rogers 4003 test boards,
respectively, with a power consumptions of 21 and 25 mW. The
BERs for both test boards are measured as < 1 x 107° by
using 223 —1 PRBS. The proposed DBI interface is able to meet
the highest aggregate data throughput and best energy efficiency
demands of future mobile memory I/O link system in conven-
tional cost-effective packaging technology with the smallest ac-
tive die area.

APPENDIX
ANALYSIS OF IMPEDANCE MATCHING FOR A
TRANSFORMER-BASED RECEIVER

The input impedance of a transformer is referred to as a
reflected impedance, meaning that the input impedance is
reflected from the load impedance. The main purpose of this
Appendix is to understand how the impedance transformation
behaves at the input terminal of the transformer.
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Fig. 11. Timing diagram of VCO startup control logic and simulated VCO startup delay.
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(a) Die photo of DBI transceiver.

As shown in Fig. 17, it is clear that the input impedance of
a mutual mixer consists of frequency-dependent resistance and
capacitive reactance, which can be approximated using the fol-
lowing equation within the bandwidth of interest:

Zmiz(w) = Zmiz, g (W) = ] Zmiz,1(w) (A1)
where Z,,;, is the total input impedance of mutual mixer
Zomiz,r and Z,;, 1 and are the real and imaginary part, re-
spectively. As shown in Fig. 17(a), Z,,i» r (dashed line) is
almost constant and Z,,;.,; (circled line) increases linearly,
which means the input impedance of mutual mixer can be
modeled as series connection of resistor and capacitor. Then
the simplified input impedance network can be modeled with
inductance (L) of the secondary spiral of transformer and
resistance (Rg = 27 f.L/Q, where f,. and Q is the self-res-
onant frequency and quality factor of the secondary spiral of
transformer, respectively). Instead of analyzing complicated
transformer network, we choose to understand the resonant
effect of secondary coil first. The equivalent input impedance
of secondary coil can be calculated as follows:

BER Tester

e ——

PRBS Generator Signal Generator

SE5s o |
8888 o

o 8888
2°%00 o Signal IN
PRBS IN
DIN(BB) DOUT(BB)
5| DBI Test Board
DIN(RF) DOUT(RF)

g 1
DC Qenerators

Fig. 13. Demonstration of DBI communication and BER measurement setup.

Zain(s) =(sL + R,)||(R+ 1/sC)

2_|_ &—FL +&L
R‘s L "rCc)°TRIC A2
= . (R.+R) 1 :
_4_’_7

s+ —
L LC

The main interest of equation (2) is to find the impedance
value at the resonant frequency. Before further analysis, since
there are two zeros and two poles, the (A.2) needs to be con-
firmed that it is indeed band-pass characteristic based on R, L,
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Fig. 14. (a) Tone test setup. (b) Measured 23 GHz RF-band carrier on DBI
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RF-band) and 10 Gb/s (5 Gb/s BB 4 5 Gb/s RF-band) data rate, respectively,
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and C values. For example, from Fig. 15(a), the imaginary part
of impedance is around —55 €2, and total load capacitance and
required inductance of secondary coil can be calculated using

1
O = T Zoma () )
1
L= G oy

Based on (A.3) and (A.4), ' is roughly 130 fF, L is 380 pH,
Rg is 4 2 (the simulated Q is 15 at f, = 23 GHz), and R
is 12 € from Fig. 15(a). Based on the calculated values, the
pole-zero map and its frequency response of input impedance
network can be plotted. As shown in Fig. 17(c), zeros are nega-
tive real numbers and the imaginary part of pole is much larger
than its real part, which shows the band-selective frequency re-
sponse as shown in Fig. 17(d). For proper impedance matching,
the key is to calculate input impedance value at its resonant fre-
quency. From the denominator of (A.2) and the resonant fre-
quency (w = 1/v/LC) under the sinusoidal steady state condi-
tion, (A.2) becomes

2+,(Rs+ 1) LB

(Bl LY B L

. L RC R LC

Zoin(jw) =R D) T . (A))
B e e o

At the resonant frequency, the equation (5) becomes

R, 1 1 (1 R, 1
Ttm) vt 7o)
(Rs+R) 1
L VIO
(A.6)
As the imaginary part of equation (6) goes to zero at the reso-

nant frequency and the term ( R, RC) is much smaller than L/C
(~ on the order of 1000), the real part can become

Z2in =R (

RI <%+L)
Re(Zas) L R’C) _ RRC+(L/C) , (LJO)
' (R, + R) R,+ R R, + R
(A7)

Fig. 17(d) clearly shows that the equivalent impedance of
secondary spiral can be transformed and boosted by the res-
onant effect of the transformer and the simulated impedance
is 227 € at the resonant frequency with actual parasitic load-
ings of the proposed differential mutual mixer. Ultimately, the
transformer turn ratio and coupling coefficient should be de-
signed depending on the impedance value (Zs;,,) of the sec-
ondary spiral to match the impedance (50 2 single-ended wise)
of an off-chip memory channel. Based on the transformer model
shown in Fig. 17(b), the reflected impedance seen from the input
of transformer can be calculated as

UJ21M2

Z in — Rs + jwly + .
! ! J ! RSQ + ,]UJLQ + ZQ'I',n

(A.8)

where R.1, L1, Rso and L+ are series resistance and inductance
of first and second spiral of transformer, respectively and M is
mutual inductance. Equation (A.8) can be rearranged with the
real and imaginary parts, where the real part can be interpreted
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TABLE 1
COMPARISON WITH STATE-OF-THE-ARTS

20

25

Frequency [GHZz]

(d

[2] JSSC [15] 1SSCC [1] JSSC This Work
2009 2009 2010 FR4 DBI Roger DBI
0.18um 0.13pm
Technology CMOS CMOS 40nm CMOS | 65nm CMOS 65nm CMOS
Bands BB BB BB BB+RF(23GHz) | BB+RF(23GHz)
Supply 1.8V 1.2V 1.1V 1.0V 1.0V
T-Line Lensth 10cm 5cm 7cm 10cm 10cm
i (FR4) (N/A) (FR4) (FR4) (Roger)
Aggregate (BB-only) (BB-only) (BB-only) (RF+BB) (RF+BB)
data rate 5Gb/s 6.0Gbps 4.3Gbps 8.4Gb/s 10Gb/s
Communication | Bidirectional | Bidirectional | Bidirectional SlTnEJItan'eous Sltnfxltarleous
Bidirectional | Bidirectional
Energy per bit 17.4p)/bit 15.8pJ/bit 3.3pJ/bit 2.5p)/bit 2.5p)/bit
11mW (BB) 13mW (BB)
Total power 87mwW 95mW 14.4mW 10mW (RF) 12mW (RF)
Chip Area 0.52mm? 0.30mm? N/A 0.14mm? 0.14mm?
1012 1012 <1015 <1015
Measured BER | opps1s1) | (PRBS215-1) N/A (PRBS23.1) | (PRBS22.1)

30
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as the reflected impedance from the secondary while the imag-
inary part is the reactive element from the primary spiral. Be-
cause the reflected impedance can be seen simply as a resistor at
the resonant frequency of the secondary, the inductance of the
primary can be evaluated by using (A.9):

Ry \’
50 x L — 1
e (271’er2> *

k2Ryp

Ly = (A.9)

where Ry is the equivalent load impedance of the secondary
and k is the coupling coefficient between the primary and sec-
ondary. The 11 can be calculated as 174 pH based on the sim-
ulation % value (0.72) from momentum simulator. Therefore,
the judicious and optimal design of transformer can provide
impedance matching and band-pass filtering to achieve good
signal integrity and reject an unwanted baseband signal.
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